HIGH THROUGHPUT SEQUENCING IN GENETIC DISORDERS

By sequencing all human genes at once (whole exome and whole genome sequencing), genetic testing can be done in the blink of an eye. Based on the clinical information, we can look immediately at the most appropriate gene or panel or go straight to the interpretation of all data. For every clinical case, we have the right solution.

Breda Genetics deploys an articulated portfolio of tests, which comprises four different whole exome sequencing solutions (MENDEL FULL, EXOME 15MB, EXOME 60MB, EXOME 90MB), whole genome sequencing 30x (GENOME FULL), a list of hundreds of fully customizable exome or genome-based multigene panels (EXOME PANEL, GENOME PANEL), and a complete range of other forefront solutions and ancillary services, from exonic/multiexonic algorithmic CNV analysis based on NGS data (EXOME CNV, GENOME CNV), to family segregation studies, MLPA/qPCR and repeat expansion testing (SANGER CARRIER, SANGER GENE, MLPA/qPCR GENE, REPEAT PLUS).

The landscape of clinical genetics worldwide is often marked by widespread difficulty in accessing genetic counselling and genetic testing, either for geographical reasons, limited budgets or absence of equipped facilities. We make a point of giving access to medical genetics services to as many people as possible, offering acceptable turnaround times and fees. If you are unsure on whether you are in need of genetic testing, please request your genetic counseling now.

Balanced translocations: what to do?

A balanced reciprocal traslocation consists in a reciprocal material exchange between two non-homologous chromosomes. Ususally, balanced reciprocal translocations can be diagnosed by karyotype analysis (an example of translocation name within a karyotype report could be: 46,XX,t(12:18)(p12;q12.3), which stays for female karyotype with an apparently balanced translocation between chromsomes 12 and 18, which exchanged the region […]

What’s the right price for whole exome sequencing?

This is one of the most frequent questions I am being asked and one of the most searched on the internet: what’s the price of whole exome sequencing (which consists in the sequencing of all human genes)? Of note, whole exome sequencing does not consist in the sequencing of the entire genetic heritage of an […]

Phenotype expansion in rare disorders

By doing genetic testing through high-throughput Next Generation Sequencing, more specifically by doing whole exome sequencing and whole genome sequencing, patients affected by a well defined syndrome may be found to harbour a pathogenic mutation in a gene previously known to be associated to a different phenotype. Similarly, a patient with a certain syndrome caused […]

Turnaround time in genetic testing for rare disorders

Patients and physicians sometimes complain about the turnaround time (TAT) of genetic testing. Now, it should be mentioned that genetic testing is technically complex, requiring several steps of sample manipulation. Especially for what concerns genetic testing for rare disorders, there’s also a final step, maybe the most important one, which is the clinical interpretation of […]

Mental retardation: panel or whole exome sequencing?

To start with isolated mental retardation (i.e. patients which are affected by mental retardation only, with no other clinical signs or very mild additional traits) to finish with highly syndromic cognitive delay in patients who shows several malformations and/or metabolic imbalances, mental retardation is possibly the largest chapter in rare genetic disorders. Today, we know […]

Semi-dominance and rare disorders

The first studies on inheritance were conducted by Gregor Mendel, the father of Genetics. He discovered that phenotypic traits (e.g. hair or eye color) where defined by the genes (DNA). Each gene has two alleles, one inherited from the mother and one inherited from the father. These alleles may be identical (homozygous alleles) or different […]

Small and large mutations: how do we sail among different mutation sizes?

Genetic variations in the human genome can differ very much in size. Starting from the smallest mutations possible, the SNV (single nucleotide variation), up to the deletion of an entire chromosome, you can find mutations of every size in the middle! The vast majority of pathogenic mutations are SNVs or small indels, which may be […]

Bed files in Next Generation Sequencing

If you are interested, or directly involved, in Next Generation Sequencing applications for research or clinical diagnostics, especially in whole exome sequencing or targeted multigene panel testing, you’ve certainly heard of the so-called bed files. If you haven’t heard of them yet, you’ll soon need to learn what they are and how to use them! […]

Non-coding exons in the diagnosis of rare disorders

Genes are the coding part of the genome and represent only 2% of the entire DNA chain. Despite this, the vast majority of pathogenic mutations causing rare disorders (up to 85%) falls right in the genes.  Genes have a well-defined structure: they are made up of exons, which represent the coding part, alternate with introns, […]

Amino acid codes (symbols)

Amino acids codes (symbols) are listed below (1 and 3 letters codes). Approved nomenclature for reports is the 3 letters code: Amino acid Code (1 letter) Code (3 letters) (official) Alanine A Ala Arginine R Arg Asparagine N Asn Aspartic Acid D Asp Cysteine C Cys Glutamic Acid E Glu Glutamine Q Gln Glicine G […]